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Résumé

Nous nous intéressons à la résolution de systèmes linéaires creux de grande taille par des mé-
thodes directes, et plus particulièrement à l’utilisation de ces méthodes dans le cadre du calcul d’un
ensemble d’éléments de l’inverse d’une matrice creuse. Cette étude s’inscrit dans le cadre d’une
collaboration avec des chercheurs du CESR (Centre d’Etudes Spatiales du Rayonnement, Tou-
louse), pour lesquels le calcul de la diagonale de l’inverse de matrices creuses (issues de problèmes
statistiques) représente une portion critique d’un de leurs codes applicatifs.

Dans une première partie, nous présentons le problème du calcul d’un ensemble d’entrées de
l’inverse d’une matrice creuse, les différentes solutions existantes, et les extensions qui ont été
proposées pendant ce travail, principalement pour la résolution d’un problème combinatoire lié au
regroupement de seconds membres creux.

Dans une seconde partie, nous présentons des résultats expérimentaux et des aspects liés à
l’implémentation, notamment dans le cadre de la collaboration avec le CESR.

Mots-clés : matrices creuses, méthode multifrontale, permutations, moindres carrés.
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Abstract

We consider the solution of large sparse linear systems with direct methods, and, more specifically,
the use of these methods for the computation of a set of elements of the inverse of a sparse matrix.
This study has been motivated by a collaboration with researchers from the CESR (Centre for the
Study of Radiation in Space, Toulouse), who develop a numerical code for which the computation
of the diagonal of the inverse of sparse matrices (from statistical problems) is critical.

In the first part of this dissertation, we present our problem (computation of a set of entries
of the inverse of large sparse matrices), the different existing techniques, and the extensions which
have been proposed throughout this study, especially for the solution of a combinatorial problem
related to grouping right-hand sides.

We present in the second part the experimental study (tests, as well as implementation con-
siderations), where we emphasize what has been done during our partnership with the CESR.

Keywords: sparse matrices, multifrontal method, permutations, least squares.
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Chapter 1

Introduction

1.1 General context of the study

Background

Solving linear systems is the keystone of numerous academic and industrial applications, especially
physical simulations (e.g. fluid dynamics, structural mechanics, circuit design, . . . ). These systems
tend to be large (commonly more than 100000 unknowns, and up to a few tens of millions nowadays)
and sparse, which means than most of the entries (often more than 99 percent) of the matrix
associated to the system are zeros; many computational methods have been and still are developed
to handle such linear systems efficiently.

In our study, we focus on problems where the right-hand sides are sparse as well. This situation
occurs in applications involving highly reducible matrices, or where one needs to compute the null-
space of a deficient matrix, or entries in the inverse of a matrix; we focus on this latter case. Such
problems arise, for example, in electromagnetics and data assimilation.

Contents

Throughout this study, we address the problem of computing a set of entries of the inverse of a
large sparse matrix, with an applicative leitmotiv (collaboration with the CESR, Centre for the
Study of Radiation in Space) described in the next section. In a first part of this dissertation, we
present the theoretical aspects needed to understand the problem, as well as our contribution to
extend previous work (mainly combinatorial aspects related to grouping right-hand sides). In a
second part, we present the various experiments carried out during our study, and highlight what
has been done in relation with the application from CESR.

1.2 Collaboration with the CESR (Centre for the Study of Radiation
in Space)

Application context

One of the motivations for this study was a collaboration between the APO (Algorithmes Parallèles
et Optimisation) team at IRIT (Institut de Recherche en Informatique de Toulouse) and the
SPI/INTEGRAL team at CESR.

In the context of the INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) mis-
sion of ESA (European Space Agency) a spatial observatory with high resolution (both in terms
of angle and energy) hardware technology was launched on October 2002. SPI is one of the main
instruments aboard INTEGRAL, a spectrometer with high energy resolution and indirect imag-
ing capabilities. To obtain a complete sky survey with SPI/INTEGRAL, processing a very large
amount of data acquired by the INTEGRAL observatory is needed [11]. For example, to estimate
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1. Introduction

the total point-source emission contributions (i.e. the contribution of a set of sources to the ob-
served field), a linear least-squares problem of about 1 million equations and 100000 unknowns
must be solved.

Technical details

Here we describe formally the application developed by the researchers from the SPI team. In the
physical problem, there are nd detectors, np measures per detector (the p-th measure of the d-th
detector is noted D(d, p)), and ns sources of energy; the aim is to compute the intensity I(s) of
every source s according to the following statistical model :

D(d, p) =

ns∑
s=1

I(s)R(d, p, s) + b(d, p)

where R is a transfer function and b a noise. This noise can be modeled by

b(d, p) = Z(p)P (d, p)

where Z (intensity of the noise for the p-th measure) and P (called the “empty field”) are unknown.
In order to preserve the linearity of the problem, we consider that P is known (hence only Z has
to be determined): we start with an approximation P0 and apply some iterative refinements (see
below). Therefore, the problem is linear and can be written as:

P (1, 1) 0 . . . 0 R(1, 1, 1) . . . R(1, 1, ns)
...

...
...

...
...

P (nd, 1) 0 . . . 0 R(nd, 1, 1) . . . R(nd, 1, ns)
0 P (1, 2) . . . 0 R(1, 2, 1) . . . R(1, 2, ns)
...

...
...

...
...

0 P (nd, 2) . . . 0 R(nd, 2, 1) . . . R(nd, 2, ns)
...

...
...

...
...

0 0 . . . P (1, np) R(1, np, 1) . . . R(1, np, ns)
...

...
...

...
...

0 0 . . . P (nd, np) R(nd, np, 1) . . . R(nd, np, ns)





Z(1)
...

Z(np)
I(1)
...

I(ns)


=



D(1, 1)
...

D(nd, 1)
D(1, 2)

...
D(nd, 2)

...
D(1, np)

...
D(nd, np)


We rewrite this system in the form Bx = y, where B is an nd · np · (ns + nd) matrix, and x

and y vectors with respectively np + ns and nd · np components. This system is overdetermined
(there are more equations - or measures here - than unknowns), therefore there is (generally) no
exact solution, but we can try to define a “best” solution [10]: a common choice, often motivated
by statistical reasons (see below), is to solve the least-squares problem

min
x
||Bx− y||

The solution of this problem can be computed by means of the normal equations:

x = A−1z, with A = BTB, and z = BT y

In the CESR context, once this problem has been solved, a better approximation of P can be
built (we do not provide details about this operation, but it is rather inexpensive), and the whole
problem is solved in successive steps of an iterative process (solving the system1, building a better
approximation, and so on). Actually, the initial approximation of P is good, and a few iterations
(10 is what is used in the code developed by the SPI team) are sufficient to converge.

1The update of P induces an update of B (np first columns), and hence of A as well.

2



1.2. Collaboration with the CESR (Centre for the Study of Radiation in Space)

Once these iterations have been performed, the variances of the components of the solution
are needed as well. These variances can be obtained by computing the diagonal of A−1 (n.b.: in
this dissertation, a−1

i,j refers to (A−1)i,j):

V ar(xi) ∝ a−1
i,i

Finally, we sum up the algorithm developed by the SPI Team:

Algorithm 1.1 Solution of the least-squares problem and computation of the variances.
1: Compute A = BTB.
2: for i=1 to 10 do {Iterative computation of P and x}
3: Solve z = Ax.
4: Compute a new approximation of P .
5: Update B.
6: Update A.
7: end for
8: Compute diag(A−1) to have the variances.

What has to be kept in mind is that computing diag(A−1) is (by far) the most expensive
operation of this algorithm (see the different experiments in Chapter 5); this justifies the need for
an efficient method for computing a set of entries of the inverse of a matrix. We describe in the
next sections the existing methods and suggest some improvements.

3





Part I

Computing entries of the inverse of a large
sparse matrix
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Chapter 2

Introduction to the field

All the algorithms presented throughout this study rely on the use of direct methods for solving
sparse linear systems; we thus first introduce such methods, then we address the problem of the
computation of a set of elements of the inverse of a large, sparse matrix.

2.1 Direct methods

Direct methods for solving linear systems are commonly based on Gaussian elimination, where
the aim is to factorize the matrix, say A, of a linear system Ax = b, into a product of “simpler”
matrices (called factors), that can be used to solve the system. Such methods usually consist of
three phases: analysis, factorization, and solution.

Analysis phase

The role of this first phase is to apply numerical and structural pretreatments in order to prepare
the following phases. Numerical pretreatments are intended to avoid numerical problems during
the factorization phase. Scaling is a typical example of such a processing: it consists in computing
diagonal matrices Dr and Dc such that DrADc has good numerical properties.

Structural pretreatments aim mainly at reducing the fill-in (non-zeros elements which appear
in the factors but do not exist in the initial matrix), which can induce a prohibitive memory
consumption. They generally consist in a reordering of the rows and columns of the initial matrix;
finding a reordering which induces a minimum fill-in is a NP-complete problem, and numerous
heuristics have been studied to obtain efficient techniques. Reorderings also define thereafter the
order in which the factorization will be performed (see below).

During the analysis phase, the symbolic factorization of the matrix, which computes the struc-
ture of the factors, is performed. The symbolic factorization is achieved by manipulating graphs
associated to the matrix to factorize. Here, we consider only the case where the matrix is struc-
turally symmetric: this means that its pattern (the set of non-zero elements) is symmetric, but
the matrix is not necessarily symmetric numerically.

Definition 2.1 - Undirected graph associated to a symmetric matrix.
The undirected graph associated with a symmetric matrix A, G(A) = (V,E), is defined as follows:

• V corresponds to the rows and columns of A, i.e. V = J1, nK.

• E corresponds to the non-zero entries, i.e. there is a edge between two nodes, say i and j, if
and only if ai,j 6= 0.

Figure 2.1 shows an example of a structurally symmetric matrix (2.1(a)) and its associated
graph (2.1(b)). This graph representation makes the description and implementation of the sym-
bolic factorization simple; we apply the following process: each time a variable (an unknown of

7



2. Introduction to the field

the linear system) is eliminated, its adjacent nodes in G(A) (variables not yet eliminated) are
connected. The new edges that appear in G(A) correspond to fill-in, i.e. non-zero elements which
exist in the pattern of the factors but not in the pattern of the initial matrix. Figure 2.1(b) shows
the edges that appear during the symbolic factorization: for example, the edges between nodes 3
and 5 and between nodes 5 and 6 appear when node 2 is eliminated, because 3,5 and 6 were adja-
cent to 2. This implies that elements (3,5), (5,3), (5,6) and (6,5) in the factors will be non-zeros.
However, there was already an edge between node 2 and node 6: elements (2,6) and (6,2) in the
factors will be non-zero, but they are not a fill-in elements, because a2,6 and a6,2 were already
non-zeros.



1 X X
2 X X X
X 3 F2 X

X 4 F1

X X F2 F1 5 F2 X
X X F2 6 X

X X 7


(a) Pattern of a structurally sym-
metric matrix and fill-in in its fac-
tors. An X corresponds to an orig-
inal entry and Fi to a fill-in in the
factors generated when eliminating
variable i.

1

4

5 3

2

6

7

(b) Undirected graph of matrix of
Figure 2.1(a) and fill-in. Dashed
edges correspond to fill-in in the
factors.

1 2

4

6

3

5

7

(c) Elimination
tree of matrix of
Figure 2.1(a).

Figure 2.1: Example of symbolic factorization of a structurally symmetric matrix.

The undirected graph associated to the matrix also expresses dependencies between the vari-
ables: an edge between two nodes (two variables of the underlying system) implies that these
variables cannot be eliminated independently. These dependencies can be represented by a com-
pressed version of the initial graph called the elimination tree. For the sake of clearness, we provide
details about the construction of elimination trees in Appendix A.1, as well as details about the
unsymmetric case and the factorization. The elimination tree is processed from the leaves (1 and 2
in Figure 2.1(c)) to the root (node 6 in Figure 2.1(c)). This traversal represents the order in which
the unknowns of the underlying linear system are eliminated: a variable cannot be eliminated
before its descendants, but two variables without a descent relation (i.e. which are not descendant
of one another) can be eliminated in any order, or at the same time. The elimination tree thus
expresses independent tasks which can be computed in parallel.

Figure 2.1(c) shows the elimination tree of the matrix of Figure 2.1(a): variables 1 and 2 can be
eliminated independently, as well as variables 3 and 4, but variable 1 has to be eliminated before
variable 4, and so on.

Finally, in a parallel context, where several processors are used to achieve the whole computa-
tion, a mapping of the tasks on the different processors is computed, which can be constrained to
balance the load, memory consumption, etc. This mapping relies on the elimination tree as well.

Factorization phase

The aim of this phase is to transform the initial matrix A (or the matrix modified by the analysis
phase) into a product of factors; several factorizations exist, such as LU factorization (A = LU

8



2.2. Multifrontal methods

with L a lower unitary triangular matrix, and U an upper triangular matrix), LDLT factorization
for symmetric matrices (A = LDLT with L a lower unitary triangular matrix, and D a diagonal
matrix), and Cholesky factorization for symmetric positive definite matrices (A = LLT ).

The factorization phase tries to follow as much as possible the preparation performed during the
analysis phase, but has sometimes to adapt dynamically because of numerical issues (typically, a
division by a very small diagonal entry, which implies round-off errors in the following operations):
this can be done by numerical pivoting (permutations of rows and columns).

Solution phase

Once the matrix has been factorized, the linear system is finally solved. For example, in the case of
an LU factorization, the system Ax = LUx = b is solved in two steps (two solutions of triangular
systems): {

y = L−1b “forward substitution”
x = U−1y “backward substitution”

Remark: an iterative refinement can be performed to improve the numerical quality of the
solution [9]. Note than one of the main interests of direct methods is that once the factorization
has been performed, it is easy to solve several linear systems Ax = b1, . . . , Ax = bn: since the
matrix is already factorized, only the solution phase needs to be performed.

2.2 Multifrontal methods

In our study, we consider a variant of direct methods called the multifrontal method. We present
it briefly in this section: first, we show how the numerical factorization relies on the structure of
elimination tree presented above, and then we present the solution phase and the solver used in
this study.

Numerical factorization

The multifrontal method was initially developed for indefinite sparse symmetric matrices [19],
then extended to the unsymmetric case [20]. Here we only outline this method; more details
(amalgamation of the nodes and management of the unsymmetric case) are given in Appendix
A.2.

A multifrontal factorization is processed as follows:

• It follows a topological ordering of the elimination tree, i.e. an ordering for which parent
nodes are numbered after their children.

• Each node of the elimination tree is processed (eliminated) as follows:

1. (for non-leaf nodes only) the node receives the contributions of its children.
2. a so-called frontal matrix corresponding to the node is factorized. This matrix is dense,

and one can take advantage of efficient BLAS kernels (Basic Linear Algebra Subroutines,
specialized in high performance dense computations [17]).

3. (for non-root nodes) the node sends a so-called contribution block to its father1.

One of the main interests of this approach is that it expresses several levels of parallelism:

• Tree-level parallelism: the elimination tree exhibits tasks which can be performed indepen-
dently.

• Node-level parallelism: one can take advantage of parallel dense kernels to process the nodes
of the tree.

1Other approaches, such as left-looking and right-looking factorizations use the same tree, but do not send and
receive contributions in the same way.

9



2. Introduction to the field

Solution phase

The solution phase, which consists of two successive triangular solutions (forward substitution
on L and backward substitution on U for an LU factorization), also relies on traversals of the
elimination tree associated to the matrix of the linear system. This is detailed and intensively
used in the next chapter, where we show that, for our problem of computation of a set of entries
of the inverse of a matrix, these traversals can be limited.

2.3 Solver used

MUMPS, Multifrontal Massively Parallel Solver

The experimental part and the developments performed during this study are based on MUMPS
(MUltifrontal Massively Parallel Solver) [2, 5, 6]. This solver can handle any type of matrices
(symmetric definite positive, general symmetric and general unsymmetric), and is aimed at solving
large systems on massively parallel architectures (i.e. with many processors). It provides a large
panel of functionalities, and especially the ability to run out-of-core: it offers the possibility to use
units of storage like hard disks to store the factors when the main memory is not large enough; this
feature has been developed in [1, 29], and we use some of the associated metrics in the following
chapters.

Experiments

During this study, some experimental features have been implemented in MUMPS in order to perform
experiments, essentially for the problem of right-hand sides permutations (metrics computations
and heuristic algorithms; see Chapters 4 and 7).

10



Chapter 3

Computing entries of the inverse

We showed in the introduction that computing a subset of the inverse of a sparse matrix is requested
in many applications, especially least-square problems and circuit studies. The first works related
to this topic are quite old, and some of them were related to the latter (Takahashi, 1973 [31]).

In practical applications, computing the whole inverse operator A−1 is very seldom done,
because using A−1 is far less efficient than using the factors, for example L and U (∀x,A−1x =
U1
(
L−1x

)
, computed by solving successively two linear systems, on L and U respectively). One of

the main reasons for this phenomenon is that A−1 is usually much denser than the initial matrix
or the factors1.

In our study, we focus on the computation of a set of entries of the inverse of a sparse matrix.
This set can have a peculiar structure (a diagonal, a block,. . . ) or not (and some of our experiments
were run with random sets). First, we describe a so-called simple method to compute the diagonal
of the inverse of a symmetric matrix, which relies on a LDLT factorization; this approach is based
on standard algorithms and was developed jointly with CESR researchers. Even if we show that
this simple method is not extremely efficient, it has interesting features with respect to other, more
efficient, methods.

We then describe two methods to compute an arbitrary set of entries; one is based on Taka-
hashi’s equations, and the other uses a “traditional” solution phase. We emphasize especially the
latter, and we propose some extensions and improvements.

3.1 A simple approach to compute the diagonal

This approach is based on a very simple algebraic result: once one has an LDLT factorization of
the symmetric matrix A to process, the diagonal elements can be computed as:

∀i ∈ J1, nK, a−1
i,i =

n∑
k=1

1

dk,k
l−1
k,i

2

Hence, once one has an LDLT factorization of A, the diagonal elements can be computed
rather simply by computing L−1. This can be done by using basic algorithms (described in [30]
for example, and in Appendix B), which compute L−1 by solving every system Lx = ei.

This approach has the following interesting properties:

• It takes into account the sparsity of the right-hand sides, and the sparsity of the matrix L
can be used easily.

• It is independent of the solver used (any LDLT factorization providing an explicit access to
L is eligible).

1To quote Tim Davis, “Don’t let that "inv" go past your eyes; to solve that system, factorize!” [15].

11



3. Computing entries of the inverse

• It is very easy to implement, and several variants of implementation, such as “left-looking”
and “right-looking” are possible. These implementations are presented in detail and compared
in terms of performance in Appendix B.

However, this approach suffers several drawbacks:

• This method is difficult to extend in order to handle multiple right-hand sides (to solve
several systems Lx = ei at the same time), because of the management of the working space.

• Adapting this approach to the case of an LU factorization is rather difficult, since one would
have to compute U−1 as well.

• Extending this method in order to compute non-diagonal elements is rather difficult as well.

This method was an interesting starting point for this study2 and a good reference approach
to highlight the qualities of the other methods. This is the reason why we have tried to improve
it (see the different implementations in Appendix B), and we have used it for our benchmarks.

3.2 Computing an arbitrary set with Takahashi’s equations

This approach, developed by Takahashi, Fagan and Chin [31] was the first one to make a direct
use of the factors L and U (and not their inverse, as in the previous method). It is based on an
LDU factorization of A (a slight variant of the LU factorization, where D is simply obtained
from the diagonal entries of U). The so-called Takahashi’s equations relate the factors L, D and
U to Z = A−1, and are derived from the equation Z = U−1D−1L−1:{

Z = D−1L−1 + (I − U)Z (1)

Z = U−1D−1 + Z(I − L) (2)

By deriving these equations, one can compute the entries in the upper part of Z and the entries
in the lower part of Z by using the U and L respectively. These computations are illustrated in
Figure 3.1: for example, if we use (1), L is a lower triangular matrix and D a diagonal matrix,
thus D−1L−1 is lower triangular and does contribute to the elements of the upper part of Z;
furthermore, I−U is upper triangular: therefore, when computing an element (i, j) of the product
(I −U)Z, elements z1,j to zi,j are multiplied by zero. This is illustrated on Figure 3.1(a), and the
same ideas hold for the computation of an element of the lower part of Z (2) (cf. Figure 3.1(b)).
Finally, we obtain: 

∀i 6 j, zi,j = d−1
i,j −

n∑
k>i

ui,kzk,j

∀i > j, zi,j = d−1
i,j −

n∑
k>j

ui,kzk,j

Using these equations recursively, one can compute the whole matrix (starting with zn,n).
However, as we said before, it is not advisable to compute the whole inverse. Erisman and Tinney
[21], proposed a method to compute a subset of elements. First, they state the following theorem,
which provides a recursive algorithm to compute the entries of Z which belong to the pattern of
(L+ U)T :

Theorem 3.1 - Theorem 1 in [21].
Any zi,j which belongs to the pattern of (L+U)T can be computed as a function of L, U and zp,q
where zp,q belongs to the pattern of (L+ U)T (q > j, p > j).

2Historically, this method had been experimented by the SPI team before they contacted the MUMPS team, using
the LDL package by Tim Davis [14].
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3.3. Computing an arbitrary set with a traditional solution phase

Z I-U

Z

D  L
-1   -1

=

*

+
X 0 X

(a) Computation of the upper part of Z.

Z

I-L

ZU  D
-1   -1

=

*

+

X 0 X

(b) Computation of the lower part of Z.

Figure 3.1: Computations of the entries of Z with Takahashi’s equations.

It should be noticed that this theorem provides a sufficient but not necessary set of elements
to compute before reaching the requested element(s), i.e. it provides a sequence of elements to
compute in order to be able the obtain the requested elements, but this is sequence is not guaranteed
to be the shortest. The same work also extends the previous result to compute entries of Z which
do not belong to the pattern of (L+ U)T .

Finally, Campbell and Davis [12] provided a multifrontal-like approach to compute a set of
elements in the case of a numerically symmetric matrix using Takahashi’s equations. This method
uses the elimination tree of the initial matrix (processed from the root to the leaves), and take
advantage of Level 3 BLAS routines (matrix-matrix computations).

3.3 Computing an arbitrary set with a traditional solution phase

This approach represents the core and main motivation of our study. It is based on the work of
Gilbert and Liu [22] and has been extended and implemented in MUMPS package (see [4, 29]). Here
we present this method and propose some improvements in the next section.

Computing a single entry

Using the traditional phase of direct methods, the whole inverse A−1 can be computed by solving
AX = I, where I is the identity matrix. Using the LU factors of A, this equation becomes:{

LY = I

UX = Y

13



3. Computing entries of the inverse

Similarly, to compute a particular entry a−1
i,j of the inverse, we use a−1

i,j = (A−1ej)i. Using the
factors, we obtain: {

y = L−1ej

a−1
i,j = (U−1y)i

(3.1)

One can notice that in the forward substitution phase, the right-hand side (ej) is sparse (only
one non-zero entry), and that in the backward step only one entry of the solution of a triangular
system is required. These properties can be exploited to enhance the solution phase.

First, we use a theorem stated by Gilbert and Liu [22]:

Theorem 3.2 - Structure of the solution of a triangular system (Theorem 2.1 in [22]).
For any lower triangular matrix L, the structure of the solution vector x of Lx = b is given by
the set of nodes reachable from nodes associated with the right-hand side entries by paths in the
directed graph G(LT ) of the matrix LT .

Using the LU factors of a given matrix A, this property can be extended to predict the structure
of the solution of Ax = b (Property 8.4 in [29]). In the case of the computation of an element a−1

i,j

of A−1, this property can be rewritten to express which path is followed in the elimination tree,
i.e., given that each node correspond to a part of L and U , which factors are actually used:

Theorem 3.3 - Factors to load to compute a particular entry of the inverse (Property 8.9 in [29]).
To compute a particular entry a−1

i,j in A−1, the only factors which have to be loaded are the L
factors on the path from node j up to the root node, and the U factors going back from the root
to node i.

This property is illustrated on Figure 3.2: if one wants to compute a−1
3,1, then the tree has to

be traversed from node 1 to the root for the forward substitution, then from the root to node 3
for the backward substitution. Note that nodes 6 and 5 are loaded twice (there is no way to spare
these accesses).

4

6

5

1 2

3

7

Ly=e Ux=y

Figure 3.2: Traversal of the tree for the computation of a−1
3,1.

Thanks to this result, the elimination tree can be “tidied-up” of all the useless nodes: this
technique is called tree pruning, and is implemented in MUMPS with an algorithm called branch
detection3 [29]. Then the solution phase relies on this so-called pruned tree instead of the initial
tree, which of course, makes the solution phase more efficient by sparing accesses to useless nodes
and related factors.

3Other prunings, such as subtree detection for the computation of nullspaces, have been used in Slavova’s thesis.
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3.4. Comparison of the different methods

Computing multiple entries

In practice, several entries (a diagonal, a block, . . . ) are requested at the same time. In this case,
one has to solve the system

AX = E

where E is formed with vectors of the canonical basis (i.e. columns of the identity): a vector ej
is a column of E if and only if at least one entry of the j-th column of A−1 is requested. For
example, if a−1

1,3, a
−1
2,6 and a−1

5,6 are requested, then E = [e3, e6].
Here we focus on an out-of-core context, where the hard disk is used to store the factors (when

the main memory is not large enough). In this situation, it is capital to minimize the number of
accesses to the disk, hence, during the solution phase, the number of times the factors are read.
Therefore, computing several entries of the inverse at the same time instead of computing them
independently is particularly interesting: indeed, if the requested row (or column) entries share a
common ancestor in the tree, then all the nodes between the root and this node have to be loaded
only once when the entries are computed simultaneously, while they would have to be loaded as
many times as there are entries requested, if these entries were computed independently.

More formally, say the entries a−1
i,j , i ∈ I, j ∈ J are requested. We note P (k) the path from a

node k to the root. During the forward phase, all the nodes on all the paths from nodes of J to the
root have to be loaded; if all the entries are requested simultaneously, all the nodes in

⋃
j∈J P (j) are

loaded, hence there are
∣∣∣⋃j∈J P (j)

∣∣∣ accesses, whereas, if the entries were computed independently,
there would be

∑
j∈J |P (j)| accesses, which is a higher amount. The same argument holds for the

backward phase, where there are
∣∣⋃

i∈I P (i)
∣∣ accesses instead of

∑
i∈I |P (i)|.

For example, say one wants to compute a−1
3,1 and a−1

4,1 simultaneously on the example of Figure
3.2: during the forward phase, an access to 4,5,6 and 7 is spared, and during the backward phase,
an access to 7, 6, and 5 is spared.

This property is extremely interesting, but it assumes that one is able to compute many entries
at the same time, i.e. solve a linear system with many right-hand sides, which is not always possible
because of memory constraints. Ideally, a maximum gain is ensured when all the requested entries
are computed at the same time, but in practice, it is seldom feasible to solve the associated system.
Therefore, the requested entries are partitioned into blocks (16 is a typical size used during the
tests). The remaining question is to find how to form these blocks such that the numbers of
accesses to the factors is minimized (or nearly minimized). This is a major point of our study; in
the next chapter, we address this combinatorial problem, present what has been done in previous
works and propose some extensions.

3.4 Comparison of the different methods

Here we compare the different approaches in terms of amount of accesses to the factors. First, we
show why the traditional solution phase outperforms the simple approach relying on an LDLT

factorization (see 3.1) thanks to the structure of elimination tree. Then we compare the traditional
solution phase with Takahashi’s approach, and show that they perform the same accesses to the
factors (the entries needed to compute another entry are the same).

Simple computation of the diagonal vs. traditional solution phase

Here we consider a case where the whole diagonal of A−1 is requested. First, we derive from
Theorem 3.3 a simple corollary:

Corollary 3.1 - Application of Theorem 3.3 to compute diag(A−1), with A symmetric and its
LDLT factorization.
To compute diag(A−1), the factors accessed are, for each diagonal entry i, the columns of L on
the path from i up to the root node.
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3. Computing entries of the inverse

This result highlights the role of the elimination tree; we illustrate it on a simple example: we
choose a 3× 3 symmetric matrix; Figure 3.3 shows the structure of the matrix, the structure of its
factor L and the structure of the associated elimination tree.

 1 X
2 X

X X 3


(a) Initial matrix.

 1
2

X X 3


(b) Factor L.

1 2

3

(c) Elimination tree.

Figure 3.3: An simple example for the computation of diag(A−1).

On this example, the different algorithms perform the following accesses:

• With the simple approach, relying on an LDLT factorization, n = 3 triangular systems are
solved:

– solution of Lx = e1: access to L∗,1, L∗,2 and L∗,3 (L∗,j stands for the j-th column of
L).

– solution of Lx = e2: access to L∗,2 and L∗,3.
– solution of Lx = e3: access to L∗,3.

• With the traditional solution phase (the elements of the diagonal are computed one by one):

– computation of a−1
1,1: access to L∗,1 and L∗,3.

– computation of a−1
2,2: access to L∗,2 and L∗,3.

– computation of a−1
3,3: access to L∗,3.

What has to be noticed is that the elimination tree expresses the independence of x1 and x2:
in order to solve Ax = b, one does not need to know x1 to compute x2 and conversely (this is
characterized on the tree by the fact that node 1 is not an ancestor nor a descendant of node 2, and
conversely). This is why, in our example, the traditional solution phase avoids a useless access to
L∗,2. This shows how following paths in the elimination tree avoids useless accesses. Furthermore,
in this example, the entries are computed one by one: more accesses could be spared by computing
them at the same time (see the previous section).

Takahashi’s approach vs. traditional solution phase

To finish, we compare the amount of LU factors which have to be accessed between the method
based on Takahashi’s equations and the method based on a traditional solution phase. We quote
the following property:

Theorem 3.4 - Property 8.11 in [29].
Let A be an unsymmetric irreducible matrix with symmetric pattern and T be its corresponding
elimination tree. To compute an off-diagonal entry a−1

i,j , every column of L from node i of T to
the root and every row of U from node j to the root need to be loaded with both approaches.

Proof. For the traditional solution phase, this is Theorem 3.3. For the approach based on Taka-
hashi’s equations, this comes from a property in [21] which states that, to compute an entry zi,j ,
all the inverse entries from the root node to nodes i and j have to be computed. This property
can be extended to show that the only factors in L and D−1U which need to be loaded are on the
path from node i up to the root node and the path from node j up to the root respectively.
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3.4. Comparison of the different methods

Finally, in terms of amount of loaded factors, there is no difference between these two methods.
An interesting quality of the traditional solution phase is that this way of handling sparse right-
hand sides can be extended to other problems, such as the computation of the nullspace of a
deficient matrix: in this case, one wants to solve Ux = 0, and this solution can be strongly
improved by pruning the elimination tree through a mechanism called subtree detection. This
has been implemented in MUMPS [29], and both A−1 and nullspace functionalities share a common
framework.
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Chapter 4

On the influence of right-hand sides
permutations

Here we focus on the computation of a set of elements of the inverse of a matrix using the method
based on the traditional solution phase. We showed in the previous chapter that computing several
entries at the same time could lead to spare some accesses to the factors: nodes which belong to
several paths in the elimination tree between a node corresponding to a requested row or column
and the root node are loaded only once. Therefore, if all requested entries are computed at the
same time, a minimum number of factors is loaded; unfortunately, it might be too expensive in
terms of memory consumption to solve the potentially very large associated system.

In order to overcome this problem, the requested entries are computed by blocks. Hence, we
wonder if it is possible to form these blocks such that the number of accesses to the factors is
minimized, or nearly so. We begin by showing that ordering the right hand sides associated to the
requested entries has a strong influence on the number of accesses to the factors; therefore, the
need for efficient orderings is justified. We then show that simple orderings, based on topological
orderings induced by the elimination tree, are interesting but not efficient enough in general; thus,
we address the problem of the construction of an efficient ordering through three complementary
approaches: a global approach based on an hypergraph model, a constructive approach based on
the shape of a solution, and local approach based on a succession of improvements of an initial
ordering.

4.1 Influence of orderings of right-hand sides

Influence of block size

We have showed previously that the ideal case was obtained when all the requested entries are
computed at the same time; conversely, a block size of 1 (i.e. computing the entries independently)
leads to a maximum number of accesses. An interesting remark is that in an in-core context, where
all the computations are done in the active memory, this situation is inverted: in this case, what
matters is the number of flops (floating-point operations). When processing several right-hand
sides at the same time, blocked computations are processed on the union of the structures of these
vectors, hence there are more computations than there would be if these right-hand sides were
processed one by one (of course, the interest is to benefit from dense kernels and thus to process
the right-hand side by blocks of reasonable size). Therefore, a block size of 1 minimizes the number
of flops, while processing all the right-hand sides at the same time maximizes it.

The context of our study is the following:

• Out-of-core context (hence the metrics is the number of accesses to the factors).

• Sequential execution (i.e. only one processor; some ideas to handle the parallel case are
suggested in [29]).
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4. On the influence of right-hand sides permutations

• There is only one non-zero entry per right-hand side: this means that only one entry per
column of the inverse is requested at most. The following results are invalid when this
assumption is not satisfied (see below).

• We work with a fixed given block size.

An interesting quantity is the lower bound of the amount of factors to load (in a sequential
environment). To compute it, we introduce the notion of number of requests (for the forward or
backward substitution phase), which expresses the number of times a request lies on a path from
a requested entry to the root:

Definition 4.1 - Number of requests of a node.
The number of requests nb_requests of a node i is recursively defined by :

nb_requests(i) =
∑

j∈children(i)

nb_requests(j) + req(i)

where req(i) is the number of requested entries corresponding to i, i.e. the number of times where
i is a column subscript (for the forward phase), or row subscript (for the backward phase).

Theorem 4.1 - Lower bound of the amount of factors to load in a sequential environment.
Let i be a node of the elimination tree. We note nb_requestsL(i) and nb_requestsU (i) the number
of requests of i in the forward and backward substitution phases respectively. Node i has a size
size(i). The block size is block_size. Therefore, the lower bound of the amount of factors to load
in a sequential environment is :∑

all nodes

size(node)
⌈
nb_requestsL(node)

block_size

⌉
+

∑
all nodes

size(node)
⌈
nb_requestsU (node)

block_size

⌉

Proof. The sum of the lower bound of the forward phase and the lower bound of the backward
phase provides a lower bound for the whole process. For any phase, the ratio nb_requests(node)
over block_size is the lowest number of blocks a node can belong to (and the “ceiling” indicates
that this number is an integer, at least 1). Hence it represents the lowest number of accesses to
this node. Finally, by multiplying by the size of the node and summing on all the nodes of the
tree, we obtain the lower bound, which, of course, might not be accessible, because it might be
impossible to reach the minimum number of accesses to every node at the same time, and to reach
the lower bound of the forward and backward phase at the same time.

We show on Figure 4.1 an example of lower bound for the forward phase: the requested entries
are a−1

2,2, a
−1
4,4 and a−1

5,5. The number of requests of node 3 is 1 (because of node 2) + 0 (because it
is not requested); for node 5 it is 1 (because of node 3) + 1 (because of node 4) + 1 (because it is
requested). Hence the lower bound (for any phase), with a block size of 2, is:

Lower-bound =

⌈
0

2

⌉
+

⌈
1

2

⌉
+

⌈
1

2

⌉
+

⌈
1

2

⌉
+

⌈
3

2

⌉
+

⌈
3

2

⌉
+

⌈
3

2

⌉
= 0 + 1 + 1 + 1 + 2 + 2 + 2

= 9

A first try: topological orderings

Here we present a first natural idea, which provided interesting results and justified the need for
an advanced study. For the sake of simplicity, we consider the case where one wants to compute
diagonal entries. A simple observation shows that when using a topological order of a tree (i.e. an
order which numbers child nodes before their father), such as pre-orders or post-orders, all nodes
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4.1. Influence of orderings of right-hand sides

1 2

4

6

3

5

0

0+1 1+0

1

1+1+1

3+0

7 3+0

Figure 4.1: Example of lower bound for the forward phase, with a block size of 2; entries a−1
2,2, a

−1
4,4

and a−1
5,5 are requested; and the number of requests are indicated for each node.

in a given subtree are numbered consecutively. Therefore, one can expect that using a topological
order will provide a good locality for factor reuse between consecutive columns of the right-hand
sides: intuitively, consecutive right-hand sides for a topological ordering will correspond to nodes
which have “good chances” to be close in the elimination tree, hence to share a “long” common
path to the root.

Therefore, one can try to use topologically-based permutations, such as pre-order or post-order.
Note that when the number of right-hand sides is a multiple of the block size, there is no difference
between these two orderings; in the opposite case, they will be different, and for a post-order, the
last block will contain nodes in the upper part of the tree, with short paths to the root.

These orderings have been tested, first in the diagonal case with matrices from CESR, then in
the general case, with matrices of all kinds. These experiments are described in Chapter 7 and in
[8]1; they essentially show that topological orderings provide interesting (quasi-optimal) results for
some problems, but can also provide very bad results (a factor of 3 compared to the lower-bound)
on some generic problems (come from real applications).

We also provide a structural example which shows a situation were a pre or post-order provides
the worst permutation possible, while a simple permutation, based on the structure of the tree,
reaches the minimum. A minimal instance is illustrated in Figure 4.2, and its generalization is
shown in Figure 4.3. In the minimal instance, we have:

Lower-bound =

⌈
1

2

⌉
+

⌈
1

2

⌉
+

⌈
2

2

⌉
+

⌈
1

2

⌉
+

⌈
3

2

⌉
= 1 + 1 + 1 + 1 + 2

= 6

Post-order (red, small dashes) = 4 (accesses to 1,2,3,5) + 3 (accesses to 3,4,5)
= 7

Simple permutation (blue, large dashes) = 3 (accesses to 2,3,5) + 3 (accesses to 1,4,5)
= 6 (an access to 3 has been spared)
= Lower-bound

1This extended abstract, written with P. Amestoy and B. Uçar, has been accepted for a presentation at the
SIAM conference CSC09 (Combinatorial Scientific Computing).
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4. On the influence of right-hand sides permutations

2

4 3 1

5

Figure 4.2: Minimal instance of the structural example. Post-order partitioning is represented
with red, small dashes, and optimal partitioning with blue, large dashes.

This example can be generalized to p blocks of two right-hand sides, as illustrated on Figure
4.3: there are ri nodes between each (requested) leaf and the requested node above, and for these
nodes, the number of requests is 1. There are qi nodes between each requested node and the root
node, and for these nodes, the number of requests is 2. Therefore, we have:

Lower-bound = s+

p−1∑
i=1

ri +

p−1∑
i=1

qi + t+ p

Post-order (red, small dashes) = s+

p−1∑
i=1

ri + 2

p−1∑
i=1

qi + t+ p

= Lower-bound +

p−1∑
i=1

qi

=
∑

requested
entries

(length(root→ entry)− 1)

= Max

Simple permutation (blue, large dashes) = s+

p−1∑
i=1

ri +

p−1∑
i=1

qi + t+ p

= Lower-bound

Here we notice that the post-order performs the highest number of accesses possible, and that
an arbitrary overhead can be produced (asymptotically, if qi →∞, there is a factor of 2).

4.2 A global approach: hypergraph model

First, we present an approach which tackles the whole problem by showing that it is equivalent to
an hypergraph partitioning problem. We first introduce the notion of hypergraph and the general
problem of partitioning an hypergraph, and then we show how these notions can be applied to our
problem.

A brief introduction to hypergraphs

Informally, hypergraphs are a generalized form of graphs where edges are allowed to connect
more than two vertices. These edges are called hyperedges or nets. Hypergraphs and hypergraph
partitioning are widely used in VLSI (Very Large Scale Integration) circuit design and parallel
computing (sparse matrix-vector product, matrix reordering, . . . ) for example.
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4.2. A global approach: hypergraph model

{
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p-1r 123

p-1

Figure 4.3: Generalization of the structural example. Post-order partitioning is represented with
red, small dashes, and optimal partitioning with blue, large dashes.

Definition 4.2 - Hypergraph.
A hypergraph H = (V,N) is defined as a set of vertices V and a set of nets N , where every net is
a subset of vertices.

Definition 4.3 - K-way vertex partition.
Π = {V1, . . . , VK} is a k-way vertex partition of a hypergraph H = (V,N) if and only if:

• Each part Vk is a non-empty subset of V : ∀k ∈ J1,KK, Vk 6= ∅ ∧ Vk ⊆ V .

• Parts are pairwise disjoint: ∀(k, k′) ∈ J1,KK2, k 6= k′ ⇒ Vk ∩ Vk′ = ∅.

• Union of the parts is equal to V :
⋃K

k=1 Vk = V .

Definition 4.4 - Connectivity of a net and partitioning problem.
Given a partition Π, the connectivity λ(i) of a net ni of N is the number of parts of Π connected
by ni:

λ(i) = |{Vk ∈ Π ; ∃v ∈ Vk/v ∈ ni}|

A cost c(i) is associated to each net ni, and in the hypergraph partitioning problem, the objective
is to find a partition Π which minimizes the cutsize:

cutsize(Π) =
∑
ni∈N

c(i)(λ(i)− 1)

The hypergraph partitioning problem is known to be NP-hard. Several strategies, which often
appear to be generalizations of methods used in graph partitioning exist: local heuristics like
Kernighan-Lin algorithm, global methods like multilevel partitioning, etc. [27]. Several hypergraph
partitioning packages exist, and the one we used is PaToH (Partitioning Tools for Hypergraphs),
which implements a multilevel approach [13].
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4. On the influence of right-hand sides permutations

Model for diagonal entries of A−1

Here we show how the problem of finding an optimal permutation of right-hand sides (to minimize
the numbers of factors loaded) can be transformed into a hypergraph partitioning problem. First,
we introduce a model for diagonal entries developed in [29].

We begin with explaining intuitively the model; the main idea is the following: when a node,
say i, is requested, all nodes on the path from this node to the root have to be loaded when
processing the associated right-hand side. Some of these nodes (likely near i) are loaded only
when i is processed (they belong to P (i) only - we recall that P (i) is defined as the path from
i up to the root node); others nodes belong to other paths, hence can be loaded several times.
Therefore, the idea is to cut a path into different pieces, corresponding to the intersections with
other paths. These pieces of paths will define the nets of the hypergraph, in the sense that all
requested nodes sharing this piece of path will belong to the nets; the cost of the nets is thus the
size of the corresponding piece of path. The beginnings of each path (piece of path between the
requested entry and the first intersection with another path) will form a first set of nets, and the
other pieces (pieces of path from an intersection to another) will form a second set. The vertices
will be the requested entries, and an entry, say i, belongs to a net, say n, if n ⊆ P (i), i.e. if
processing this entry requires to load the piece of path corresponding to n. The cost of a net will
be the cost of loading the associated path; therefore, when partitioning the vertices (the requested
entries), the connectivity λ(i) of a net will correspond to the number of times the associated piece
of path is loaded, and finally, the cutsize will correspond to the overhead generated by the partition,
compared to the lower bound (n.b.: actually only a half of the overhead, because we count only a
phase - backward of forward solution). Therefore, minimizing the cutsize of our hypergraph will be
equivalent to minimizing the cost for computing the requested entries. We thus define the model
formally:

Definition 4.5 - Hypergraph model for diagonal entries.
We define the set of vertices, the set of nets and the associated costs:

• Vertices: the vertex set V is equal to the set of requested entries.

• Nets: there are two types of nets:

– N1: there is a net in N1 for each requested node.

– N2: there is a net in N2 for every node fi, where fi is the lowest node in the intersection
P (i) ∩

⋃
i′ 6=i P (i′), called the least common ancestor or lowest ancestor of node i with

another node.

Nets are defined as follows: a net ni is defined as the set of requested nodes and lowest
ancestors in the subtree rooted at i.

• Costs: the cost of a net ni is c(ni) = Cost(i, fi) =
∑

k∈P (i,fi)\fi

size(k).

Theorem 4.2 - Structure of the hypergraph model.
Each net ni is the union of any net nk where i is an ancestor of k in the elimination tree.

Theorem 4.2 shows that the hypergraph modelling our problem has a very peculiar structure,
since there are chains of inclusions between the nets. Unlike the general hypergraph partitioning
problem, knowing whether partitioning such a hypergraph is feasible in a polynomial time or not
remains an open question.

Figure 4.4 shows an example of such a hypergraph: the requested entries are a−1
3,3, a

−1
4,4, and

a−1
14,14. Therefore, V = {3, 4, 14} and N1 = {n3, n4, n14}. Moreover, N2 = {n7} because 7 is the

lowest node in P (3)∩P (4); each net is the union of the sets associated to its descendants, therefore
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4.2. A global approach: hypergraph model

: n3 = {3}, n4 = {4}, n7 = {3, 4}, n14 = {3, 4, 14}. For this example, assuming that each node has
size 1, the cutsize is:

cutsize = c(n3)(λ(n3)− 1) + c(n4)(λ(n4)− 1) + c(n7)(λ(n7)− 1) + c(n14)(λ(n14)− 1)

= 1(1− 1) + 2(1− 1) + 1(2− 1) + 1(2− 1)

= 2

n
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Figure 4.4: Example of hypergraph model for diagonal entries: a−1
3,3, a

−1
4,4, and a

−1
14,14 are requested.

Extension to the general case

We have extended the previous model in order to handle the case where some requested entries
are non-diagonal2. The idea is to use the fact that a−1

i,j =
(
A−1ej

)
i
and Equation 3.1: basically,

the hypergraph obtained appears like a “sewing” of the two hypergraphs the initial model would
give for the diagonal entries associated to the column subscripts (forward phase) and the diagonal
entries associated to the row subscripts (backward phase):

Definition 4.6 - Hypergraph model for the general case.
We define the set of vertices, the set of nets and the associated costs:

• Vertices: a node for each requested element: there is a node (i, j) if and only if ai,j is
requested.

• Nets: the requested i’s (row subscripts) and j’s (column subscript)s define their sets of nets :

– Nup
1 : a net for each j of each requested element, with a single vertex (to the corre-

sponding requested element). Remark: a situation where two nodes (i1, j) and (i2, j)
are requested is not allowed, because the model does not express the fact that these
entries are necessarily processed simultaneously.

– Nup
2 : a net for each node fi in the intersection of a number of paths to the root: each

net nup
l is the union of any net nup

k , where node j is ancestor of node k in the elimination
tree

– Ndown
1 : a net for each requested i. Remark: if two elements in the same row are

requested (say A−1
i,j1

and A−1
i,j2

), two nets are created: nup
i1

linking to node (i, j1) and nup
i2

linking to node (i, j2).

– Ndown
2 : same thing than Nup

2 , but using the “down” nodes

• Costs: same thing than in the diagonal model : c(ni) = Cost(i, fi).

2However, there is still only one non-zero entry per column of the right-hand side.
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4. On the influence of right-hand sides permutations

Figure 4.5 shows an example where the requested entries are a−1
8,3, a

−1
5,4 and a−1

12,14. The elimi-
nation trees (and the nets) as well as the hypergraph are represented.
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Figure 4.5: Example of hypergraph model for the general case: a−1
8,3, a

−1
5,4 and a−1

12,14 are requested.

Several remarks can be done:

• This kind of “sewing” is referred in other applications (such as sparse matrix partitioning)
as vertex amalgamation [32].

• The model does not work for the case where a column of the right-hand side contain more
than one non-zero entry (the fact that two entries in the same column are automatically
grouped is not taken into account).

• In the diagonal case, the “up” set of nets is equal to the “down” set; hence the cutsize of this
model is twice the cutsize of the diagonal model, i.e. the real overhead.

4.3 A constructive approach: structure of a solution

Here we present a constructive approach which tries to build an optimal solution. First, we give a
necessary and sufficient condition for optimality, and then we present a heuristic algorithm which
tries to build a solution driven by this condition.

Structure of an optimal solution

The property we propose uses the notion of encompassing tree:

Definition 4.7 - Encompassing tree of a set of nodes.
Let S = {s1, . . . , sn} be a set of nodes of a tree T . The encompassing tree of S is the minimal tree
T e
S which contains S. Let fS be the lowest common ancestor of the nodes in S; then

T e
S =

⋃
si∈S

P (si, fS)

We recall that P (si, fS) is the path from node si to the root node fS . We also need the notion
of number of blocks below a node:

Definition 4.8 - Number of blocks below a node.
Let n be a node of the tree and Π = {S1, . . . , Sp} a partition of the requested entries (p blocks of
size b). The number of blocks below n is defined as:

nb_blocks_belowΠ(n) = |{S ∈ Π/T e
S ⊂ Subtree(n)}|
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4.3. A constructive approach: structure of a solution

We first provide several lemmas which re-express the number of requests and the number of
accesses of a node as functions of the number of blocks below a node, and which will be useful to
prove the necessary and sufficient condition.

Lemma 4.1

∀n,nb_blocks_belowΠ(n) =
∑

c∈Children(n)

nb_blocks_belowΠ(c) + |{S ∈ Π/T e
S is rooted at n}|

Proof. This is simply due to the fact that blocks below each children of n form disjoint sets (hence
the first part of the expression), and that blocks with encompassing trees rooted at n are not
counted in any number of blocks below a child (hence the second part).

We then provide a lemma which relates the number of requests of a node (we recall that it is
defined as the number of times a node lies on a path from a requested entry to the root node) to a
partition of the requested entries, although the number of requests is independent of the partition.

Lemma 4.2

∀n,nb_requests(n) = b · nb_blocks_belowΠ(n) +
∑
S∈Sn

|S ∩ Subtree(n)|

with Sn = {S ∈ Π/n ∈ T e
S ∧ T e

S not rooted at n}

Proof. This is proven recursively, following a topological order on the nodes of the tree.

• base case: for a leaf l of the tree, nb_blocks_belowΠ(l) = 0, and
∑
Sl |S ∩ Subtree(n)| =

1 if n is requested, 0 otherwise (Sl is reduced to the block containing l if l is requested, and
is empty otherwise.

• general case: for a node n of the tree, we have, on the one hand:

nb_requests(n) =
∑

c∈Children(n)

nb_requests(c) + req(n)

=
∑
c∈...

(
b · nb_blocks_belowΠ(c) +

∑
S∈Sc

|S ∩ Subtree(c)|

)
+ req(n)

= nb_blocks_belowΠ(n)

− b · |{S/T e
S is rooted at n}|+

∑
c∈...

∑
S∈Sc

|S ∩ Subtree(c)|+ req(n) (∗)

On the other hand, using Subtree(n) = {n} ∪
⋃

c∈Children(n)

Subtree(c), we have:

∑
S∈Sn

|S ∩ Subtree(n)| =
∑
S∈Sn

∣∣∣∣∣∣S ∩
{n} ⋃

c∈Children(n)

Subtree(c)

∣∣∣∣∣∣
=
∑
S∈Sn

∑
c∈Children(n)

|S ∩ Subtree(c)|

Similarly, Sn can be decomposed, and this gives the equality with (∗). The main idea is that
the number of requests of nodes in blocks which are below n but not its children will be
summed, and cancel the first term in (∗); req(n) will be summed with |S ∩ Subtree(c)| for
the children which are in the same block that n.
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4. On the influence of right-hand sides permutations

Figure 4.6 illustrates this property: for each node n, the number of blocks below the node, the
number of requests, and the ratio

⌈
nb_requests

Π
(n)

b

⌉
is given. For example, for node “n” (marked in

red), the number of blocks below is 1, the number of requests is 5, and the ratio is 2.
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Figure 4.6: Illustration of the proof of the necessary and sufficient condition. For every node n,
the number of blocks below the node, the number of requests, and the ratio

⌈
nb_requests

Π
(n)

b

⌉
is

given.

Similarly, we relate the number of accesses to the partition, thanks to the notion of number of
blocks below a node:

Lemma 4.3

∀n, nb_accesses(n) = nb_blocks_belowΠ(n) + |Sn|

Proof. The number of accesses to n is the number of blocks such that n is on the path from (at
least) a node of this block to the root. This is the case with blocks which are “below” n, and with
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4.3. A constructive approach: structure of a solution

blocks with encompassing trees including n (except those rooted at n, because they are already
counted in nb_blocks_belowΠ(n).

Now that we have expressed the number of requests of a node (which is used to compute the
lower bound of the number of accesses) and the number of accesses of a node as functions of the
partition of the requested entries, it is rather simple to know whether a partition can reach the
lower bound or not. Since both quantities contain (nb_blocks_belowΠ(n), the key is to compare
the other terms,

∑
S∈Sn |S ∩ Subtree(n)| and (|Sn| − 1) (which is the term which can implies non-

optimality):

Theorem 4.3 - Necessary and sufficient condition for reaching the lower bound (diagonal case).
Let Π = {S1, . . . , Sp} a partition of the requested entries (p blocks of size b). The number of
accesses achieved when processing the right-hand sides according to Π is equal to the lower bound
of Theorem 4.1 if and only if:

∀n,
∑
S∈Sn

|S ∩ Subtree(n)| > b · (|Sn| − 1)

Proof. Since for each node n, the ratio dnb_requests(n)
b e defines the minimum number of accesses to

n, the total number of accesses achieved when processing the right-hand sides according to Π is
equal to the lower bound of Theorem 4.1 if and only if

∀n,nb_accesses(n) 6

⌈
nb_requests(n)

b

⌉
⇔∀n,nb_blocks_belowΠ(n) + |Sn| 6

⌈
b · nb_blocks_belowΠ(n) +

∑
S∈Sn |S ∩ Subtree(n)|

b

⌉
⇔∀n, |Sn| 6

⌈∑
S∈Sn |S ∩ Subtree(n)|

b

⌉
⇔∀n, |Sn| <

∑
S∈Sn |S ∩ Subtree(n)|

b
+ 1 (because |Sn| is an integer)

⇔∀n,
∑
S∈Sn

|S ∩ Subtree(n)| > b · (|Sn| − 1)

It is essential to understand that this condition is only able to tell whether a partition reaches
the lower bound or not. However, there are cases where the lower bound is not reachable (hence
where the condition is impossible to satisfy); in these cases, the condition will be unable to detect
a solution which performs the minimal number of accesses. Figure 4.7 shows an example of such a
situation: the block size is 3 and the lower bound is 12, but no partition (we the 3 possible types
of partition) can reach it.

The most interesting aspect of this result is its structural interpretation: since the condition
relies, for every node n of the tree, on blocks with encompassing trees which include n, the condition
can be reinterpreted in terms of intersection of encompassing trees. We first derive an intuitive,
weak sufficient condition: assume that for every node, say n, of the tree, |Sn| = 0 or 1. On the one
hand, this means that n is a non-root node of 0 or 1 encompassing tree, and the root of a certain
number of encompassing trees. Structurally, it is easy to check that this means that encompassing
trees do not intersect, or that they intersect in one node (which is necessarily a node of a tree, and
the root of all the other trees). On the other hand, this implies that the condition of the previous
theorem is automatically satisfied. Therefore, we have proven that when encompassing trees do
not intersect, or intersect only in one node, the lower-bound is reached.

Theorem 4.4 - Structural sufficient condition.
For a given partition, if any intersection of (two or more) encompassing trees of the sets of the
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1

246

35

7

Figure 4.7: Example leading to an unreachable lower-bound. The 3 possible types of partitions
are showed.

partition is either empty or a node, the number of accesses yielded by the partition is equal to the
lower-bound.

The previous condition is sufficient but not necessary, since the intersections of encompassing
trees can form, under a certain assumption, a path. The following result provides a structural
necessary and sufficient condition:

Theorem 4.5 - Structural necessary and sufficient condition.
A partition reaches the lower bound if and only if any intersections of (two or more) encompassing
trees of the sets of the partition is either empty, or a node, or a path such that its nodes respect
the necessary and sufficient condition. The intersection cannot be a tree (with more than branch).

Proof. The different kinds of intersection are analyzed:

• Empty intersection: they correspond to nodes which are not non-root nodes of any encom-
passing tree (therefore |Sn| = 0 and the condition is satisfied), or nodes which are a non-root
node of only one encompassing tree (therefore |Sn| = 1 and the condition is satisfied).

• If the intersection of k (k > 2) encompassing trees is a node, this node is necessarily the root
of k − 1 trees, otherwise the intersection is a path. Therefore, |Sn| = 1 and the condition is
satisfied.

• If the intersection of several encompassing trees is a path, the condition has to be checked.
An interesting case is the situation where a path is the intersection of two encompassing
trees (but no more): in this case, |Sn| = 2, and it is easy to see that checking the condition
at the lowest node of the path is enough.

• If the intersection of several encompassing trees is a tree, it is rather simple to show that at
least one node which does not satisfy the condition can be found (e.g., in the case where the
intersection of two, but no more, encompassing trees is a tree, there is a leaf l such that the
condition is not satisfied).

Figure 4.8 shows an example of application of the previous result: a−1
3,3, a

−1
4,4, a

−1
10,10, a

−1
11,11, a

−1
12,12

and a−1
13,13 are requested. The blocks are represented in red, small dashes, and the encompassing

trees are represented in green, larger dashes. In this example, the condition is satisfied, because :
T e
{3,4} ∩ T

e
{10,11} = ∅, T e

{3,4} ∩ T
e
{12,13} = ∅, and T e

{3,4} ∩ T
e
{10,11} = {12}.

This property can be simply extended to the general case by applying it to the row and column
subscripts of the requested entries:
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Figure 4.8: Example of application of the necessary and sufficient condition (diagonal case) where
the partition is optimal; blocks are represented in red, small dashes, and encompassing trees with
green, larger dashes.

Theorem 4.6 - Necessary and sufficient condition for reaching the lower bound (general case).
Let Π = {S1, . . . , Sp} a partition of the requested entries (p blocks of size b). The number of
accesses achieved when processing the right-hand sides according to Π is equal to the lower bound
of Theorem 4.1 if and only if the partition induced by the row subscripts of the elements of Π and
the partition induced by the column subscripts of Π respect condition 4.3.

Proof. The result is clear since the lower bound in the general case is the sum of the lower bound
for the row subscripts and the lower bound for the column subscripts.

Remark: in the general case, a row subscript can be associated to several requested entries.
Hence, the corresponding node has req(i) > 1, and the previous proof has to be slightly adapted:
|S ∩ Subtree(n)| becomes

∑
s∈S∩Subtree(n) req(s), because counting nodes is not enough anymore

(the number of times they correspond to requested entries, “req”, has to be taken into account).

Remark: one has to understand that, in the general case, we do not consider a partition of
the row subscripts and a partition of the column subscripts, but only a partition of the right-hand
side, which induces the partitions of the subscripts. Therefore, if one chooses to build a partition
according to the row subscripts, the column subscripts partition is automatically defined, and
conversely. Hence, it is not possible to optimize the total cost by minimizing the number of accesses
of the forward and the backward phases independently. This makes think that the condition is
rather difficult to satisfy.

Figure 4.9 shows an example of application of Theorem 4.6. The requested entries are a−1
1,3, a

−1
5,4,

a−1
4,10, a

−1
14,11, a

−1
9,12 and a−1

8,13. The partition is : {{a−1
1,3, a

−1
5,4}, {a

−1
4,10, a

−1
14,11}, {a

−1
9,12, a

−1
8,13}}; the row

subscripts partition is {{1, 5}, {4, 14}, {8, 9}} (represented in blue, spaced dashes) and the column
subscripts partition is {{3, 4}, {10, 11}, {12, 13}} (represented in red, small dashes). In this case,
the condition is not satisfied because of the row subscripts partition: T e

{1,5} ∩ T
e
{4,14} = {6, 7},

which is a path which does not respect the condition (6 is the lowest node, there are two nodes of
T e
{1,5} ∩ T

e
{4,14} in Subtree(6), which is greater or equal to the block size).

Heuristic construction

The previous result gives hints about the shape of an optimal solution. Here we present a simple
heuristic for the diagonal case, which builds a partition of the requested entries with a traversal
of the elimination tree: the idea is to try to gather nodes such that the sets form small trees.
This will hopefully form a partition such that the encompassing trees of the different sets of the
partition do not intersect, or intersect only in one node.

Algorithm 4.1 shows this heuristic. It collects the requested entries following a depth-first
traversal3, and relies on a preventive idea: if the current node in the traversal, say n, has ancestors

3In this case, it is equivalent to a reverse post-order, i.e. a pre-order.
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Figure 4.9: Example of application of the necessary and sufficient condition (general case) where
the partition is non-optimal; blocks are represented in red, small dashes, and encompassing trees
with green, larger dashes.

in the previous block S, then we try to gather the current node n, its ancestors and the nodes near
n (potentially brothers, “nephews”, etc.); we consider n′, the highest ancestor of n:

• case I: if there is no node in S outside Subtree(n′), then n is exchanged with n′ (because,
when a chain or a subtree is spread onto several blocks, it is generally better to put the
lowest nodes together).

• case II: if there is a node n′′ of S outside Subtree(n′), then it is exchanged with n, because
P (n) has more overlapping than P (n′′) with the paths from the other nodes of the previous
block to the root node. If there are more than one node like n′′, the tie-breaking rule is to
choose the highest one (because it minimizes the overhead triggered if there is a chain of
nodes which are not in Subtree(n′)).

Thereby, if the requested nodes following n in the traversal are “far” from n, we avoided a
potentially “large” intersection between the encompassing tree of the previous block and the en-
compassing tree of the block n would have belonged to. Figure 4.10 illustrates case I and case II.
It is interesting to see that in case I, the intersection of the two encompassing trees obtained is re-
duced to a single node; in case II, the intersection is empty. Without the exchange, the intersection
would have been a tree in both cases.

Algorithm 4.1 Heuristic construction of a solution.
1: for all nodes n do {Depth-first traversal of the tree}
2: Add n to the list of nodes.
3: if n is a descendant of a node of the previous block S then
4: n′ = highest ancestor of n in S.
5: if S\Subtree(n′) = ∅ then
6: Exchange n with n′. (case I)
7: else {There is a node of S which is not below n′}
8: n′′ = highest node in S\Subtree(n′).
9: Exchange n and n′′. (case II)

10: end if
11: end if
12: end for

Figure 4.11 shows an example of execution of this algorithm with a block size of 3: the elim-
ination tree (with the requested entries in grey and the blocks given by the heuristic in red,
small dashes) and the successive states of the list of nodes. In this example, the lower bound is
53. The partition given by the heuristic algorithm induces 55 accesses. It is simple to see that
{. . . , {5, 6, 7}, {8, 11, 12}, . . .} could be replaced by {. . . , {6, 7, 8}, {5, 11, 12}, . . .}, thus saving an
access to 8 and 9 and reaching the lower bound.
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n

n'

⇒
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(a) Illustration of case I: n is exchanged with its highest ancestor in the previous block,
n′.

n

n'

n"

⇒

n

n'

n"

(b) Illustration of case II: n is exchanged with n′′, highest node in S\Subtree(n′).

Figure 4.10: Illustration of the different cases of Algorithm 4.1.

The main objective for further research is to extend this heuristics to the general case (i.e.
not restricted to diagonal entries). The intuition is that performing our heuristics on the column
subscripts and embed information on the row subscripts to perform exchanges should be a good
idea.

4.4 A local approach: improvement of a given order

Motivation

The structural example showed that a post-order could perform poorly because of nodes which
belong to the same branch of the tree but that are split by the post-order. This is also confirmed by
the structural properties exposed above. In this section, we want to improve a given order as fol-
lows: the main idea is to perform exchanges between two blocks such that nodes which belong to the
same branch of the tree but in different blocks are reassembled. We thus have a local improvement
strategy which can guide a heuristic algorithm:
1: List all configurations such that nodes on the same branch are split onto several blocks
2: while the list is non-empty do
3: Select a configuration in the list
4: Perform a local improvement
5: Update the list
6: end while
Of course, there is no guarantee that this algorithm will converge, or will provide an optimal

solution, but hopefully, the initial partition (a post-order for example) will be improved.
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(a) Example of result of the heuristic construction.

28
28 26
28 26 25 |
28 26 25 | 24
28 26 25 | 24 23
28 26 25 | 24 23 22 |
28 26 25 | 24 23 22 | 21 21 ↔ 24 (case II)
28 26 25 | 21 23 22 | 24 20
28 26 25 | 21 23 22 | 24 20 19 |
28 26 25 | 21 23 22 | 24 20 19 | 15 15 ↔ 24 (case II)
28 26 25 | 21 23 22 | 15 20 19 | 24 14 14 ↔ 20 (case I)
28 26 25 | 21 23 22 | 15 14 19 | 24 20 13 | 13 ↔ 19 (case I)
28 26 25 | 21 23 22 | 15 14 13 | 24 20 19 | 12 12 ↔ 24 (case II)
28 26 25 | 21 23 22 | 15 14 13 | 12 20 19 | 24 11 11 ↔ 20 (case I)
28 26 25 | 21 23 22 | 15 14 13 | 12 11 19 | 24 20 8 | 8 ↔ 19 (case I)
28 26 25 | 21 23 22 | 15 14 13 | 12 11 8 | 24 20 19 | 7 7 ↔ 24 (case II)
28 26 25 | 21 23 22 | 15 14 13 | 12 11 8 | 7 20 19 | 24 6 6 ↔ 20 (case I)
28 26 25 | 21 23 22 | 15 14 13 | 12 11 8 | 7 6 19 | 24 20 5 | 5 ↔ 19 (case I)
28 26 25 | 21 23 22 | 15 14 13 | 12 11 8 | 7 6 5 | 24 20 19 | 3 3 ↔ 24 (case II)
28 26 25 | 21 23 22 | 15 14 13 | 12 11 8 | 7 6 5 | 3 20 19 | 24 2 2 ↔ 20 (case I)
28 26 25 | 21 23 22 | 15 14 13 | 12 11 8 | 7 6 5 | 3 2 19 | 24 20 1 | 1 ↔ 19 (case I)
28 26 25 | 21 23 22 | 15 14 13 | 12 11 8 | 7 6 5 | 3 2 1 | 24 20 19 |

(b) Successive states of the partition.

Figure 4.11: Example of application of the heuristic construction.

Local improvement

Here we only provide the main issues guiding the local improvement strategy. Assume that there
exist two nodes, i and j, such that P (j) ⊂ P (i) (i.e. j is on the path between i and the root node)
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and which belong to different blocks of an initial partition of the right-hand sides. We say that
the block containing j is the “upper block”, and the block i belongs to is called the “lower block”.
The first idea is to try to transfer one of these nodes from one block to another, so that they
are reassembled. However, the constraint on the number of nodes per blocks has to be satisfied:
therefore, a node has to be given “in return” from the block which received the node to the other.

We first provide a result which indicates if transferring a node from one block to the other
induces a positive gain, without considering the problem of giving a node in return:

Theorem 4.7
Transferring a requested node from one block to the other induces a positive gain if and only if
this node is the only one of its block which belongs to Subtree(j).

Figure 4.12 illustrates the previous result: we choose i = 4, j = 11. Subtree(11) is represented
with green, large dashes.

• Is it interesting to perform a transfer from the lower block to the upper block ? 4 is not the
only node of the lower in Subtree(11), therefore such a transfer would generate an overhead.
Without 2 and 5 (i.e. if they were not requested or were in another block), transferring would
be interesting.

• Is it interesting to perform a transfer from the upper block to the lower block ? 11 is not
the only node of the upper block in Subtree(11), therefore such a transfer would generate an
overhead. Without 8, it would not be interesting either, because of 10; however, without 8,
transferring 10 would be interesting.

1

23

45

6

78

9
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1112

13

14

15

''upper
 block''

''lower
 block''

Figure 4.12: Illustration of a single exchange.

If one chooses to transfer a node from one block to the other, a node has to be given in return.
We provide some rules for the selection of this node; for the sake of simplicity we assume that i
was transferred from the lower block to the upper block, but the following results can be easily
transformed to fit the other case.

35



4. On the influence of right-hand sides permutations

Theorem 4.8 - Selection of a node in return.
The selection of a node is guided by the following results:

1. There is an isolated node in the lower block, i.e. a node k such that there is no other node
of the lower block on P (k) and Subtree(k). Such nodes can be given in return “for free” (i.e.
there is no overhead).

2. Otherwise:

a) If the lower block is included in Subtree(j), there is no gain possible (i.e. any transfer
would generate an overhead). We call such a situation a “locked block”.

b) Otherwise, there are nodes of the lower block outside Subtree(j), but they are not
isolated. Hence, nodes of another branch will be split. In this case, the node given in
return is the highest node of the lower block Subtree(j), so that the overhead generated
is minimized. This overhead has to be compared with the gain obtained by transferring
i to determine if the whole process is interesting.

An extension: multiple exchanges

Theorem 4.7 shows that transferring only one node at a time is very restrictive, because this a
node cannot be transferred if there is another node of its block Subtree(j). Thus, a natural idea is
to transfer more than one node at the same time: for instance, transferring a node along with all
the nodes of its block which belong to Subtree(j) seems to be good way to circumvent the previous
problem. We state the following result:

Theorem 4.9
A transfer from one block to the other induces a positive gain if and only if all the nodes of this
block which belong to Subtree(j) are transferred at the same time.

Then, |Subtree(i)| nodes have to be given in return, and the previous rules can be extended.
These ideas describe the main components of this heuristics (a sequence of local improvements).

Finally, what has to be noticed is the similarity between this heuristics and the constructive algo-
rithm: if the initial guess of our heuristics is a depth-first search of the tree, then both algorithms
look very close, because they try to gather nodes with a descent relation. The heuristics presented
here is more general and seems more robust than the constructive algorithm, because it performs
checks before exchanging nodes (and guarantees local gains). Further research has to be done, but
the idea of local improvement seems promising, since a few exchanges are sometimes sufficient to
improve heavily a given partition.

4.5 Perspectives

We have presented different approaches to tackle our combinatorial problem, with various points
of view. A few questions remain open and several extensions could be considered:

• In-core case: as said above, the metrics associated to the in-core case are completely different,
and it could be interesting to address this problem and to see how both problems compare.

• Multiple entries per column: if a column of the right-hand contains multiple entries, then this
column is associated to several requested entries, but these entries are necessarily processed
at the same time. Therefore, one cannot only settle for adding these entries in the previous
models, since this constraint would not be taken into account (the entries could be spread
into different blocks).

• Hypergraph implementation: the hypergraph representation presented above is interesting
since it makes it possible to reduce our application to a rather well-known problem, with
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robust software packages able to handle it. Unfortunately, our hypergraph is large (with
many nets and connections), and partitioning could be intractable for large problems. The
fact that our hypergraph has a very peculiar structure (nets are included in one another)
could be profitable.

• Compressed representations of the problem: the necessary and sufficient condition presented
above shows how a good partitioning of the right-hand sides should look-like, and emphasizes
the fact that it is interesting to have partitions which form small subtrees. This information
could be injected in the hypergraph model: entries forming small subtrees of the good size
could be merely removed from the model, and a group smaller than the block size could be
collapsed into a “super-entry”.

• Flexible block size: in our study, the block size is given; this corresponds to a regular way of
using direct solvers, but this is a significant constraint for our problem. Some examples show
that sometimes, adding a last node to a block is “the straw that broke the camel’s back”:
sometimes, a single node of a block can generate a large overhead because this node shares
pieces of paths to the root with requested nodes of other blocks, and transferring this node
to another block could cancel this effect. Therefore, allowing some flexibility for the block
size could be interesting.

• Parallel execution: in parallel environment, one has to give work to each processor. A simple
interleaving algorithm, based on the subtrees built during the mapping phase of the analysis,
is proposed in [29], and could be improved or extended.
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Experimental study
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Chapter 5

Context of the experimental study

In this section, we focus on the impact of our work on the performance of the application developed
by the SPI team at CESR. We recall the main and most costly steps of the application:
1: Compute A = BTB
2: for i=1 to 10 do
3: Solve z = Ax
4: Update B
5: Update A
6: end for
7: Compute diag(A−1)

We first provide some preliminary results which were useful to determine the cost of each step of
the global application. We then highlight some problems, suggest some corrections and show that
computing the diagonal of the inverse of A is indeed the most expensive part of the application,
hence justifying the need for our study.

5.1 First experiments

Preliminary results

We first present some preliminary results provided by the SPI team which illustrate the cost of
the different steps of the computation. These tests were run on the “Integral-5” machine at CESR
(4 dual-core Opteron processors at 2.4 GHz, with 32 GB of memory1). Matrix B has 688,201
rows, 66,522 columns, and 43,940,234 non-zero elements; A = BTB has 66,522 rows and columns,
and 5,904,797 non-zero elements (see the introduction for the definition of matrices A and B).
The update phase modifies the first 5,782 columns of B at each iteration. The computation of
diag(A−1) is done with MUMPS, by solving every Ax = ei, i ∈ J1, nK and selecting the requested
entries. These preliminary results are reported in Table 5.1.

Operation Time (s)
Computation of A = BTB 25,000
Solution of Ax = b 1,300
Update of A 30
Computation of diag(A−1) 6,000
Total time 45,000

Table 5.1: Preliminary tests on Integral-5 computer.

1Only one processor is used.
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Observations

These results were startling for several reasons: first, the time for computing BTB is surprisingly
high: even if B is quite large, it is also very sparse (its density2 is approximately 0.001), so that we
think that sparsity was not correctly exploited in this computation. Secondly, the solution time
with MUMPS is surprisingly high as well. Finally, the computation of the diagonal of the inverse of
the matrix represents a minor part of the overall time while it is the most computationally intensive
part of the application from far; one should thus expect that it takes an important proportion of
the computation time.

We show in the next section that using more efficient algorithms and tuning the codes, one
can obtain significant improvements leading to timings in agreement with the complexity of the
computations.

5.2 Simple improvements

Improvement of the computation of BTB

The algorithm of computation of BTB (as well as the algorithm to update BTB, which is a simple
restriction of the first one) was a homemade algorithm developed by the SPI team. We decided to
replace it with an adaptation of an algorithm from the MA49 package: this package by C. Puglisi
[28] implements a multifrontal QR factorization.

MA49 relies on a property which states that, for any matrix, say A, the Cholesky factor LT of
ATA and the R factor of the QR factorization of A are the same3; this property is used for the
symbolic factorization (computation of the structure of R), and therefore MA49 provides a routine
to compute the structure of ATA from the structure of A. We have extended this routine so that
it also computes the numerical values of ATA.

We show some test results (the tests were carried on the “Tolosa” machine at IRIT (one 1.8
GHz core used), for both the computation of BTB and its update (after the modification of 5000
columns of B).

Algorithm Time (s)
Initial algorithm ∼ 60, 000
Modified MA49 routine 165

Table 5.2: Improvement of the computation of A = BTB, on Tolosa computer.

Algorithm Time (s)
Initial algorithm ∼ 600
Modified MA49 routine 1.5

Table 5.3: Improvement of the update of A = BTB, on Tolosa computer.

The gain is significant (improvement by a factor of 100). It shows the interest of using special-
ized libraries (dedicated to sparse matrix computations in this case).

Tuning of MUMPS

The bad results obtained during the solution phase (based on MUMPS solver) were due to a mistake
in time measurement, and to a misuse of the solver:

2The density of an m× n matrix is defined by the ratio nnz
mn

.
3If A has the strong Hall property.

42
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• The analysis phase was done in all the iterations: since the structure of the matrix always
remains the same, a single analysis (during the first iteration) could have been enough.

• Error analysis was enabled: this features provides numerical information about the initial
matrix (estimated conditions numbers, infinite norm, . . . ) and the computed solution (resid-
ual, backward error, . . . ) [26]. This feature is very useful but expensive, and has to be
disabled when performance is critical; furthermore the problem we address is not very tough
numerically, thus it is not useful to request this analysis.

• Iterative refinement: this feature is designed to improve the accuracy of the computed solu-
tion by applying a few steps of an iterative procedure, starting from an initial solution given
by the direct solver ([9]). In our case, this option was enabled (with 3 iterations requested)
but not necessary (the stopping criterion was satisfied before starting the refinement, but
this criterion is quite expensive to evaluate).

With a better timing of the software, the time for a solution with MUMPS decreased from 1300
seconds to approximately 10 seconds.
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Chapter 6

Computation of the diagonal of the inverse

6.1 Experiments

In this section, we present a series of experiments related to the computation of the diagonal of
the inverse of a matrix. We focus on matrices from the CESR: we show results for a small problem
(of size 9000) and for the largest problem the CESR had to deal with (of size 148000).

We compare different methods and solvers:

• A “strict” traditional solution phase without pruning: here we simply solve every system
Ax = ei without the improvements presented in 3.3 (pruning of the elimination tree). Two
packages are compared: MUMPS and MA57 [18] (multifrontal method for symmetric systems).
With MUMPS, two block sizes of the right-hand sides have been tested (1 and 20).

• The approach relying on an LDLT factorization presented in 3.1. The package LDSPARSE
[14] is used to compute the factorization. More details about the computation of the diagonal
elements of the inverse are given in B

• MUMPS A−1 functionality, which uses a traditional solution phase with tree pruning as pre-
sented in 3.3.

6.2 Results

The results are presented in Table 6.1 and Table 6.2. “MUMPS (20 RHS)” and “MUMPS (1
RHS)” refer to a strict traditional solution (no pruning) using MUMPS with a block size of 20 and
1 respectively. “MA57 (20 RHS)” refers to a strict traditional solution phase using MA57 with a
block size of 20. “LDL” refers to the approach relying on an LDLT factorization using LDSPARSE.
Finally, “MUMPS A−1” refers of MUMPS A−1 functionality.

Solver Time (s)
MUMPS (20 RHS) 43
MUMPS (1 RHS) 95
LDL 71
MUMPS A−1 6

Table 6.1: Computation of the diagonal of a matrix of size 9000 from the CESR.

Note that on the largest problem, the factorization could not be completed by LDSPARSE because
of numerical problems (this packages does not provide numerical pivoting). These results show very
good performance of the approach presented in 3.3 over a strict traditional solution phase: pruning
the elimination tree leads to clear gains. Note that the gain is even larger for the largest problem.
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Solver Time (s)
MUMPS (20 RHS) 11,000
MUMPS (1 RHS) 23,000
MA57 (20RHS) 13,000
MUMPS A−1 760

Table 6.2: Computation of the diagonal of a matrix of size 148000 from the CESR.

The approach relying on an LDLT factorization shows reasonable performance for small problems,
but could not be tested with larger matrices. Therefore, this approach could be interesting and
usable if a package providing an LDLT with pivoting was used, but cannot really compete with
a traditional solution phase with pruning anyway. Furthermore, as mentioned before, it is hard to
generalize this approach for non diagonal computations or unsymmetric matrices.
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Chapter 7

Influence of right-hand sides permutations

Here we present results related to the combinatorial problem of finding an optimal grouping of
right-hand sides. We first report some experiments with topological orderings which motivated
our study. We then compare the different solutions proposed: hypergraph model and constructive
heuristics.

7.1 Topological orderings

The first experiments with topological orderings have been carried out in [29] in the context
of the collaboration with the CESR. These experiments are presented in Table 7.1: randomly
chosen 10% of the diagonal of A−1 are to be computed with 16 right-hand sides per block; the
execution is sequential and MeTiS is used for ordering the matrix). This table presents the ratio
between the size of the loaded factors and the lower bound mentioned above. The “no ES” column
corresponds to the case where the sparsity of the right-hand sides is not exploited (i.e. using a
strict traditional solution, without pruning). The next three columns (“Nat” , “Po”, and “Pr”)
correspond to the partitioning of the right-hand sides by first sorting the requested entries with,
respectively, the natural order, a post-order, and a pre-order (reverse of the order used for “Po”),
and then by dividing the sorted subscripts into blocks of size 16. One can notice the clear speed-
up obtained when sparsity is exploited, and the better performance of the three partitioning
alternatives compared to the one based on natural order.

Matrix Ratio: factors loaded/minimum
size no ES with ES

Nat Po Pr
21,572 8.91 3.24 1.01 1.02
46,799 11.65 1.32 1.10 1.10
72,358 191.81 3.22 1.11 1.11
148,286 260.81 3.69 1.09 1.09

Table 7.1: Tests of topological orderings: computing random 10% of the diagonal entries of the
inverse of a set of test matrices.

The experiments described above show that the two topological orderings (pre/post-order) lead
to near optimal results on this set of matrices (ratios are around 1.1) but one can wonder if this is
always the case. We show in Table 7.2 some experiments on a set of general-purpose matrices, from
various applications (these matrices are described in Table 7.5, at the end of this chapter): first,
computation of random 10% entries in the diagonal of A−1; second, random 10% entries (diagonal
or off-diagonal) in A−1. The experimental setting is the same as before. We notice that on most
matrices, the topological orderings lead to poorer performance than reported in Table 7.1.
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Matrix 10% diagonal 10% off-diag
CESR(46799) 1.01 1.28
af23560 1.02 2.09
boyd1 1.03 1.92
ecl32 1.01 2.31
gre1107 1.17 1.89
saylr4 1.06 1.92
sherman3 1.04 2.51
grund/bayer07 1.05 1.96
mathworks/pd 1.09 2.10
stokes64 1.05 2.35

Table 7.2: Efficiency of post-order based partitioning of the right-hand sides (ratio of factors
loaded/lower bound) on some matrices from University of Florida collection.

These results show that a permutation based on a post-order traversal of the tree provides
interesting result in the diagonal case; however, important factors (between 1.5 and 3 for most
problems) can be potentially gained in the general case by improving the way the right-hand sides
are grouped. This observation has motivated our study.

7.2 Hypergraph model

Here we report some experiments carried out in [29], where the hypergraph model is tested with the
matrices from the CESR, where random 10% entries of the diagonal of the inverse are computed.
The partitioner used is PaToH [13]. In Table 7.3, the hypergraph model (column “HG”) is compared
to the post-order (column “Po”).

Matrix Ratio:
size factors loaded/ minimum

Po HG
21,572 1.01 1.01
46,799 1.10 1.01
72,358 1.11 1.00
148,286 1.09 1.01

Table 7.3: Tests of the hypergraph model: computing random 10% of the diagonal entries of the
inverse of a set of test matrices.

One can notice the good performances of the hypergraph model, which provides a better per-
mutation than the post-order, and nearly reaches the lower bound for all the problems. Even if,
as said before, this particular set of problems from the CESR is rather “easy” (since topological
orders perform quite well), these results are promising. Further research and experiments have to
be made to improve the representation and implementation of this hypergraph model, especially
in the general (non-diagonal) case.

7.3 Constructive heuristics

The constructive heuristics described in 4.3 has been implemented so that it provides MUMPS with
a partition of the right-hand sides used in the solve phase, and has been tested with the set of
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matrices described in Table 7.5, where random 10% diagonal entries of the inverse are requested.
The results obtained are reported in Table 7.4.

Matrix Efficiency
CESR(46799) 1.01
af2356 1.01
boyd1 1.03
ecl32 1.01
gre1107 1.09
saylr4 1.08
sherman3 1.05
grund/bayer07 1.07
mathworks/pd 1.06
stokes64 1.04

Table 7.4: Efficiency of heuristics based partitioning (ratio of factors loaded/lower bound) on some
matrices from University of Florida collection. Random 10% diagonal entries are requested.

One can notice that this heuristic algorithm provides very good results for this set of problems,
since the numbers of accesses to the factors never exceeds 10% of the lower bound; however, a
permutation based on a post-order provides nearly the same results, but is less expensive to obtain
(since a post-order of the elimination tree is already constructed during the analysis phase of the
solver). Therefore, our main objective is to extend this approach to the diagonal, by modifying
the algorithm so that it works with information on the rows and columns of the right-hand sides at
the same time. Furthermore, work has to be done to evaluate precisely the cost of this heuristics
and propose efficient implementations.

Matrix Size Number of non-zeros Symmetry Field of application
CESR(46799) 46,799 3,582,484 Symmetric Astrophysics
af2356 23,560 484,256 Unsymmetric Fluid Dynamics
boyd1 93,279 1,211,231 Symmetric Numerical Optimization
ecl32 51,993 380,415 Unsymmetric Semiconductor Simulation
gre1107 1,107 5,664 Unsymmetric Computer Systems
saylr4 3,564 22,316 Unsymmetric Petroleum Engineering
sherman3 5,005 20,033 Unsymmetric Reservoir Simulation
grund/bayer07 3,268 20,963 Unsymmetric Chemical Simulation
mathworks/pd 8,036 13,036 Unsymmetric Linear Algebra
stokes64 12,546 140,034 Symmetric Fluid Dynamics

Table 7.5: Set of matrices used for the experiments.
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Conclusion

A motivation for this study was the collaboration with the SPI team at CESR: the aim was to
understand their application globally and to improve the computation of the diagonal entries of
the inverse of their large, sparse matrices. This objective has been fully reached, since gains of a
factor of 15 have been obtained on the largest problem; furthermore, the whole application has
been significantly improved as well. The solutions proposed ensure improved robustness, especially
from a numerical point of view, and thanks to the fact that they rely on well-known and actively
maintained packages, such as MUMPS and MA49 for instance.

Our first contribution was to compare the behaviour of the different solutions for computing a
set of entries of the inverse of a large, sparse matrix, and to experiment them in a real production
code from an application in astrophysics. During this study, the problem of finding an optimal
permutation of right-hand sides has been tackled. This new combinatorial problem is an interesting
extension of previous works like [29], and we have shown that significant gains can be expected.
Even if much work still has to be done (see below), the theoretical work proposed here is already
valuable and has led to practical algorithms.

Many questions still remain open, and many trails can be explored in order to extend this
study. These potential improvements have been suggested in the previous sections (especially 4.5),
and we remind the most significant ones:

• In-core case: study the influence of right-hand sides groupings in this context, and study the
difference with the out-of-core case.

• Parallel execution: extend what has been proposed in [29].

• Extend the different models and heuristics proposed in this study, and especially compact
representations of these models.

• In the case of the computation of the diagonal elements of the inverse of a sparse, symmetric
matrix, spare a solution with L by solving Lx = ei instead of LDLTx = ei (theoretically,
this leads to gaining a factor of 2).
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Appendix A

More details about elimination and
assembly trees

A.1 Construction of the elimination tree

In this section, we provide information about the construction of elimination trees. Several points
of view, which highlight different properties of elimination trees (dependencies, structure of the
factors, compactedness,. . . ), can be adopted. All this information can be found in a survey of Liu
[25], and we report only a few important aspects, which are critical to understand the role and
expressivity of elimination trees in direct methods.

A first definition

We consider the case where A is positive definite; thus, a Cholesky factorization can be applied:
A = LLT . We consider F = L+ LT the filled matrix of A, and its undirected graph G(F ).

Definition A.1 - Elimination tree.
Consider the L factor of A; for all j < n, remove all the nonzeros in this column except the first
nonzero below the diagonal1. Let Lt be the resulting matrix and Ft = Lt + LT

t . G(Ft) has a tree
structure, and is called the elimination tree of A, noted T (A).

Properties:

• T (A) has the same node-set as G(A) and is a spanning tree of G(F ).

• xn is the root of T (A).

Column dependencies

The definition above does not seem very constructive at first sight, but is actually motivated by
column dependencies, thanks the following proposition:

Lemma A.1
For i > j, the numerical values of column L:,i depend on column L:,j if and only if li,j 6= 0.

This result means that the filled graph G(F ) expresses the dependencies between the columns
of the Cholesky factor L. One can notice that the graph contains redundant information: if there
is a path of length greater than one between a node xi and a node xj , and an edge between them
as well, this edge does not provide any information, since we already know that L:,j will depend

1Since A is positive definite, this is always possible.

53



A. More details about elimination and assembly trees

on L:,i. The graph can be compressed by suppressing all this redundant information. This process
is known as transitive reduction, and one can show that the transitive reduction of G(F ) is T (A).

Other constructions can be expressed; for example, T (A) can be seen as a depth-first search
tree of G(F ).

Structure of the factors

One of the main roles of the elimination tree is to determine the structure of the factors. We quote
an important result:

Theorem A.1 - Structure of the factors (theorem 3.5 in [25]).
li,j 6= 0 if and only if the node xj is an ancestor of some node xk in the elimination tree, where
ai,k 6= 0.

Figure A.1 shows a simple illustration of theorem A.1: node 4 is an ancestor of 2 (actually its
father), a6,2 6= 0, hence l6,4 6= 0.


1

2 X X
3

X 4
5 F

X F 6


Figure A.1: Illustration of theorem A.1.

Thanks to this result, several algorithms can be developed to build the row or column structure
of the factors, as well as the elimination tree itself.

A.2 Assembly trees

Motivation

Elimination trees are very efficient at expressing independent tasks, but these tasks are not effi-
cient per se, because of their very small granularity. A major improvement is to create blocked
computations, which are far more efficient: roughly speaking, processing a n × n dense matrix is
more efficient than processing n2 1× 1 matrices, because it enables the use of dense kernels, such
as BLAS [17], which are efficient, among other things, at taking advantage of cache memory. This
blocking can be achieved thanks to the creation of supernodes, by grouping nodes of the elimination
tree.

Supernodes and amalgamation

Supernodes (or supervariables) represent a group of columns of the factor L which share the same
pattern (i.e. Struct(L:,k) = Struct(L;,k+1)∪ {k+ 1}). The corresponding nodes of the elimination
tree are merged to create a so-called supernode. Processing this supernode consists in factorizing
a dense matrix, and one can take advantage of high performance dense kernels. The tree obtained
after the detection of supernodes in the elimination tree is called an assembly tree.

The previous constraint can be relaxed so that nodes that “nearly” share the same structure
are amalgamated. This may generate some fill-in, and the number of operations and memory
consumption are increased, but the whole process benefits from fast dense computations, because
the size of the frontal matrices to factorize is increased.
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A.3 Unsymmetric case

Here we briefly describe two ways of handling the case where the matrix is not symmetric: the first
approach generalizes the concept of elimination tree, and the second one relies on a symmetrization
of the matrix the factorize.

Extension of the symmetric model

Gilbert and Liu have extended their work to the unsymmetric case in [22]. In this case, the
elimination tree, which was a transitive reduction of the dag of LT , is replaced by two elimination
dags (e-dags), which are the transitive reductions of the dags of LT and U . Gilbert and Liu show
how these two e-dags can be built simultaneously from one another and from the initial graph, and
thus how to perform the symbolic factorization of the initial unsymmetric matrix. Some solvers
like SuperLU_DIST [24], and UMFPACK[16] rely on the e-dag concept and properties.

Symmetrization

Some solvers, MUMPS in particular, choose to use a symmetric pattern to handle unsymmetric
matrices: they work on the structure of the symmetrized matrix A+ AT (each zero element of A
which is nonzero in A + AT is replaced with a numerical zero value). Thus they can rely on the
elimination tree of the symmetrized matrix. This has been generalized by Amestoy and Puglisi
[7] to handle unsymmetric matrices introducing unsymmetric frontal matrices, but still relying on
the “standard” elimination tree.
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Appendix B

Computation of the diagonal of the inverse
thanks to a factorization

Here we provide some details about the implementation of the computation of the diagonal of the
inverse of a symmetric matrix A, based on an LDLT factorization. We first present two basic
computational schemes, called left-looking and right-looking approaches, then we show how they
can be applied to our problem, and finally we compare the different approaches (both in terms of
complexity and practical performance).

B.1 Left-looking vs. right-looking approaches

Left-looking and right-looking are two computational schemes which can be applied to many al-
gorithms; we apply them to the solution of a triangular system since it is directly related to our
application. We then show how to apply such schemes to the factorization phase.

Generic scheme

We consider a group of objects (e.g. nodes of a dependency tree) which have computations to
perform, with dependency relations between the computations. Left and right-looking schemes
define the way the objects perform their work and communicate.

A generic left-looking scheme can be summarized as follows:

1. Each object gathers information from all the objects on which it depends,

2. Then it performs its computation.

Such an algorithm is also referred as "demand-driven", because the information needed to process
a computation are gathered only when needed [23]. On the opposite, a right-looking scheme
processes as follows:

1. Each object already has the information it needs and performs its computation,

2. Then it sends its contribution to the objects which depend on him.

This computational scheme is also referred as "data-driven", since each data is used as soon as it
is computed to modify all the objects it affects.

Solution of a triangular system

Say we want to solve a lower triangular system Lx = b. We apply a forward substitution (the
variables are computed from x(1)=b(1)/L(1,1) to x(n)). Algorithm B.1 and B.2 show the left and
right-looking solutions respectively.
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Algorithm B.1 Left-looking triangular solution Lx = b.
1: for i=1 to n do

2: x(i)=

b(i)−
i−1∑
j=1

L(i,j)x(j)

{x(i) gathers updates from previous variables}

3: x(i)=x(i)/L(i,i)−1{x(i) is then computed}
4: end for

Algorithm B.2 Right-looking triangular solution Lx = b.
1: for j=1 to n do
2: x(j)=b(j)/L(j,j) {Computation of xj}
3: for i=j+1 to n do {x(j) contributes to the following variables}
4: b(i)=b(i)-L(i,j)*x(j) {Right-looking update of the RHS}
5: end for
6: end for

One can notice that the left-looking version accesses matrix L by rows, whereas the right-looking
version accesses it by columns. Quite often, matrices are stored using a format which represent
the matrix column by column; hence, accessing such a format by row is difficult, and performance
generally collapses. However, in our application, both solutions are possible (see below).

Factorization phase

These schemes can also be applied to the factorization phase, and we compare them to the multi-
frontal method (we underline the different levels of communication in the elimination tree).

• Left-looking scheme: first, a node receives contributions from its descendants1, then it pro-
cesses its own computation.

• Right-looking scheme: a node processes its own computation, then it sends its contribution
to its ancestors.

• Multifrontal method : first, a node of the tree receives contributions from its children, then it
processes its own computation, and finally it send its contribution to its father.

Figure B.1 sums up these different approaches (for the matrix of Figure 2.1).

B.2 Implementation

We recall that the diagonal entries of the inverse matrix are computed as:

∀i ∈ J1, nK, a−1
i,i =

n∑
k=1

1

dk,k
l−1
k,i

2

L−1 is computed thanks to a classic algorithm (which computes each column by solving a system
Lx = ei), which is described in [30] (and can be seen included in the next algorithm). In our
application, L is stored with a column-oriented scheme; hence, when solving every system Lx = b,
using a right-looking solution seems to be better suited.

Actually, a left-looking scheme can be used as well, by simply using the fact that l−1
i,j = l−Tj,i :

∀i ∈ J1, nK, a−1
i,i =

n∑
k=1

1

dk,k
l−Ti,k

2

1Not every descendant though, only the ones which have an explicit dependency to the node.
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(a) Left-looking.
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(b) Right-looking.
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5

7

(c) Multifrontal.

Figure B.1: Illustration of the different factorization schemes; node 5 is processed; dashed arrows
represent contributions sent, and plain arrows contributions received.

Similarly, L−T is computed by an algorithm which solves every system LTx = ei, but this time,
the best choice is a left-looking approach: such an approach accesses the rows of LT , hence its
accesses L by columns, and therefore fits the storage scheme. However, this approach suffers a
drawback: when solving LTx = ei, each component xj is computed as xj =

∑i
k=1 l

T
j,kxk: only the

i first components of the j-th line of LT need to be accessed (this is illustrated in Figure B.2).
If the lines of LT (columns of L) are stored sorted, it is easy to“break” the loop which scans the
lines so that it stops at lTj,i, but this cannot be assumed all the time [14], and in a case where the
columns of L are not sorted, one has to access the whole lines of LT . Even if the computation is
still correct (these useless entries are multiplied by zero), it is easy to show that the numbers of
floating-point operations is multiplied by 2 (see below).

i

i

* 1

0

0

i

0

ix

Figure B.2: Solution of LTx = ei.

Figure B.3(a) illustrates the left-looking solve performed on LT and B.3(b) shows a right-
looking solve performed on L. Algorithm B.3 and B.4 show the left and the right looking variants
respectively. The storage format for L is the compressed column form: column j is stored in
Lx[Lp[j]...Lp[j+1]-1], and the corresponding row indices are Li[Lp[j]...Lp[j+1]-1]. One
has to notice that the computation of the diagonal elements is different from one version to another:
in the left-looking approach, all the elements are computed at the same time, by accumulating
contributions of the columns of L−T ; in the right-looking approach, each element is computed in
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one shot, and this can be useful if only a few entries of the diagonal are needed.

k

k

=* xk kLk,k bk

(a) Left-looking solve on LT .

k

k

=* xk kLk,k
T bk

(b) Right-looking solve on L.

Figure B.3: Variants of implementation for the computation of the diagonal.

Algorithm B.3 Computation of the diagonal of A−1 (left-looking version).
1: covar = 0
2: for i=1 to n do {Computation of the i-th column of L−T }
3: x=0
4: x(i)=1
5: for j=i-1 to 1 by -1 do {Backward computation of the xj}
6: for k=Lp(j) to Lp(j+1)-1 do {xj =

∑
k l

T
j,kxk}

7: if (Li(k)>i) then {To avoid to access the line to far}
8: break
9: end if

10: x(j)=Y(j)-Lx(k)*x(Li(k))
11: end for
12: end for
13: for j=1 to i do {We add the contribution of x on every a−1

j,j }
14: covar(j)=covar(j)+x(j)*x(j)/D(j)
15: end for
16: end for

Algorithm B.4 Computation of the diagonal of A−1 (right-looking version).
1: covar = 0
2: for k=1 to n do {Compute the k-th column of L−1 solving Lx = ek}
3: x(k)=1
4: x(k+1:n)=0
5: for j=k to n do {Compute the xj}
6: x(j)=x(j)/Lx(j)
7: for i=Lp(j) to Lp(j+1)-1 do {x(j) contributes to the following variables}
8: x(Li(i))=x(Li(i))-Lx(i)*x(j) {Right-looking update of the RHS}
9: end for

10: covar(k)=covar(k)+x(j)*x(j)/D(j)
11: end for
12: end for
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B.3 Comparison

First, we show that both left and right-looking versions of the computation of the whole diagonal
have the same complexity: the number of floating-points operations is proportional to the number
of elements accessed in L (we ignore the computation of the covariances which requires the same
number of operations in both algorithms):

• Left-looking version: it solves every system LTx = ei by a backward substitution (from i=n
to 1); for each one of these systems, the algorithm accesses rows i to 1 of LT , and scanning
each row j, leads to i-j accesses2. Hence, the number of accesses becomes:

n∑
i=1

i−1∑
j=1

(i− j) =
1

6
(n− 1)n(n+ 1) = Θ

(
n3

6

)
.

• Right-looking version: it solves every system Lx = ei by a forward substitution (from j=1 to
n); for each one of these systems, the algorithm accesses columns i to n of L, and scanning
each row, say j, leads to n-j accesses. Hence, the number of accesses is:

n∑
i=1

n∑
j=i

(n− j) =
1

6
(n− 1)n(n+ 1) = Θ

(
n3

6

)
.

Both versions have the same theoretical complexity; however, experiments show that they
behave very differently. We show some tests performed on “Tolosa”, with a matrix of size 8999
from the CESR; Table B.1 shows the number of floating-point operations and the computation
time for the different versions of the algorithm (“LL” stands for a left-looking version where the
loop cannot be broken, “LL+stop” stands for a left-looking version where the loop is broken, and
finally “RL” stands for a right-looking version).

Algorithm Operations (G flops) Time (s)
LL 6.29 2,919

LL+stop 2.34 2,928
RL 19.80 3,788

Table B.1: Tests of the different versions.

The “stopped” version of the left-looking algorithm performs well, but one can wonder why
the right-looking algorithm performs so many operations, while we were expecting a decrease.
Actually, the right-looking version suffers from the sparse structure of L: Figure B.4 shows the
structure of A before and after reordering (based on AMD [3]), and the structure of the factor L. L
contains a full block (∼ 1400× 1400), which slows down dramatically the right-looking algorithm.
The left-looking version accesses this block (or subparts of this block) only 1400 times, whereas the
right-looking variant accesses it n times (more precisely, it accesses n−1400 times the whole block,
and 1400 times subparts of this block; cf. Figure B.5, which shows the sequences of accesses to
the elements of L performed by the left and right-looking algorithms respectively). This behaviour
explains the huge increase in the number of floating-point operations.

A few tests were also performed with Tim Davis’ LDSPARSE package which provides an other
implementation of the factorization and different settings for AMD. Figure B.6 shows the structures
obtained with this new ordering. One can notice that the dense block has disappeared (this seems
to be related to the numerical behaviour of Davis’ LDLT code). Table B.2 shows the results
obtained with this new ordering; one can see that in this case, the right-looking behaviour is
improved thanks to the reduction of the density of the last block, as explained before. However,
the right-looking version is still slow, and the left-looking version (where the loop is stopped) is
the method of choice.

2If the loop cannot be “broken”, there are n-j accesses, which finally implies a factor of 2.
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B. Computation of the diagonal of the inverse thanks to a factorization

Figure B.4: Structures of A, A with reordering, and L.

(a) Accesses to L with the left-looking algo-
rithm.

(b) Accesses to L with the right-looking algo-
rithm.

Figure B.5: Comparison of the accesses performed by the different implementations.

Figure B.6: Structures of A, A with new reordering, and L.

Algorithm Operations (G flops) Time (s)
LL 5.49 2,909

LL+stop 0.47 2,855
RL 5.57 3,788

Table B.2: Tests of the different versions with another ordering.
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